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Abstract. Fe2+/Fe3+ ordering in magnetite is described in terms of a simple mean-field approach
based on an effective interionic Coulomb potential. It is shown that first-order electronic
order–disorder transformations, as reported in the literature, can only be reproduced when the
dependence of the interionic potential on the unit-cell dimensions is taken into account. In
this case the first-order transitions can then be viewed as the result of an interplay between the
lattice-deformation energy and the free-energy contribution related to the electronic ordering of
the octahedral Fe lattice. Furthermore, the effect of the lattice deformation by hydrostatic pressure
on the Verwey transition can be successfully explained to some extent within the context of the
same framework. In comparison to experimental data available from the literature, the mean-field
approach developed in this paper yields very acceptable results with respect to both qualitative and
quantitative aspects, thus opening an interesting new viewpoint on the mechanism of the Verwey
transition.

1. Introduction

Since its discovery the Verwey transition in magnetite (Fe3O4) has been the subject of numerous
investigations. As early as the 1930s Verweyet al suggested that the phase transition in
magnetite near 125 K, as observed by anomalies in the thermal-expansion and the electric and
magnetic properties, consists of an electronic order–disorder transformation at the Fe2+/Fe3+

octahedral sublattice [1]. Verwey’s interpretation of the phase transition was based on
measurements of the conductivity against temperature, showing that the conductivity increases
discontinuously by orders of magnitude at the transition. In fact, the low-temperature phase
transformation in magnetite became one of the first insulator–metal transitions reported ever.
The phenomenon has never lost attention ever since. Lately, for instance, the Verwey transition
has often been referred to as an example of charge-ordering phenomena in connection with
the colossal magnetoresistance of perovskites [2].

Among many other intriguing issues, the classification (order) of the electronic phase
transition at the Verwey transition itself is an interesting topic that has been extensively
investigated [3]. In stoichiometric magnetite the Verwey transition is first order. With
increasing cation deficiency or with increasing concentration of cation substitutes for the Fe
ions at the octahedral lattice sites, however, the transition becomes second order. Honig and
co-workers dealt with this aspect of the Verwey transition both experimentally and theoretically
[4–6]. Their theoretical investigations consist of a description of the Verwey transition in terms
of a mean-field approximation originally advanced by Strässler and Kittel (SK) [7]. The method
is capable of describing some qualitative aspects of the Verwey transition in a rather formal
and mathematical way. A drawback of the implementation of the SK method by Honiget al
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is that the actual mechanism responsible for the electronic order and its collapse at the Verwey
temperature is not clearly specified, even when such a precise specification is not required for
a more qualitative description of the Verwey transition. So far, a transparent explanation of
an ordering mechanism capable of dealing with both first- and second-order electronic phase
transitions has not been given in the literature. The present authors recently proposed a model
for electronic ordering in magnetite in terms of an effective interionic Coulomb potential
[8]. Though offering a successful (semi-) quantitative explanation for the Verwey transition,
our approach was, however, unable to deal with problems related to the order of the Verwey
transition. We hereby present an extension of our previous treatment that points to the physical
mechanisms leading to first-order transitions and how they are suppressed to yield second-order
transitions by cation deficiency or cation substitutions.

2. Mean-field model based on an effective interionic Coulomb potential

The basic concept of our model is that the unpaired 3d electrons responsible for the electronic
ordering at the octahedral lattice (2+ electrons) can occupy the sites of two equivalent sublattices
(a and b). In the perfectly ordered state one of the sublattices is fully occupied while the other
one is fully empty. Driven by the entropy term in the free energy, the 2+ electrons are distributed
statistically over both sublattices with increasing temperature until at the Verwey temperature
both sublattices are equally occupied. In a mean-field approach, the (Coulomb) interaction
energy of the 2+ electrons at the respective a and b sublattices can be expressed in terms of the
degree of occupation (g) of the a sublattice and two interaction constants (M1 andM2) mainly
related to the Madelung energy [8]:

Ua = −(gM1 + α(1− g)M1 + (1− g)M2 + αgM2)

Ub = −((1− g)M1 + αgM1 + gM2 + α(1− g)M2). (1)

The parameterM1 thereby counts for the interaction of a 2+ electron with other 2+ electrons in
the same sublattice, whereasM2 corresponds to the interaction of the electron with the other
sublattice. The constantα = 3/2 represents the ratio of the ionic charges of the Fe3+ and Fe2+

ions.
The internal energy of the total ensemble of 2+ electrons can now be expressed as

U = 1
2N(gUa + (1− g)Ub) = βg2 − βg + γ (2)

whereN is the total number of 2+ electrons and

β = N(α − 1)(M1−M2)

γ = − 1
2N(M1 + αM2). (3)

The factor 1/2 should be included in (2) to avoid double countings. The variableg varies
betweeng = 1 in the ordered state andg = 1/2 in the disordered state. By substitution of
g = 1 into (1) and evaluation ofUa −Ub, β/N can be identified as the difference between the
a-sublattice and b-sublattice 2+ electron levels in the perfectly ordered state.

The quantityr = 2g − 1 can be viewed as the order parameter of the problem asr varies
betweenr = 1 for g = 1 andr = 0 for g = 1/2. By substitution ofg = (r + 1)/2, (2) and (3)
then transform into

U = β

4
r2 + γ ′ γ ′ = 1

4N(1 +α)(M1 +M2) (4)

whereγ ′ can be viewed as the internal energy of the total ensemble of 2+ electrons in the
disordered state(r = 0), whereasβr2/4 counts for the variation of the internal energy upon
ordering.
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To establish an expression for the Helmholtz free energyF = U − T S as a function
of r we must also find an expression for the entropyS(r) = k lnW(r). Based on similar
considerations as the SK method [7], we take forW the number of independent ways to realize
a state havinggN electrons at the a sublattice and(1− g)N electrons at the b sublattice:

W =
[

N !

(N − gN)!(gN)!
]2

. (5)

By application of Stirling’s formula to (5) and substitution of the result together with (3) and
(4) intoF = U − T S the Helmholtz free energy forg 6= 0, 1 can then be expressed as

F = βg2 − βg + γ − 2NkT (−g ln g − (1− g) ln(1− g))
= β

4
r2 + γ ′ − 2NkT

(
− r + 1

2
ln
r + 1

2
− 1− r

2
ln

1− r
2

)
(6)

asN →∞ in the thermodynamic limit.
In thermodynamic equilibrium,r adopts a valuere for which (6) reaches its lowest

minimum on the interval 06 r 6 1. Generallyre depends on temperature. The procedure
of minimizing (6) with respect tor (i.e. solving the equation∂F/∂r = 0) cannot be carried
out completely by algebraic methods but requires a numerical procedure in its final stage.
Especially for smallerr-values however, the free energy can be approximated very accurately
by a power-series expansion ofS in r up to the fourth order, giving

S ≈ −Nk
6
r4 −Nkr2 +Nk2 ln 2

and consequently:

F ≈ NkT

6
r4 +

(
NkT +

β

4

)
r2 −NkT 2 ln 2 +γ ′. (7)

Higher order expansionsS andF contain only even terms(a2nr
2n) with positive coefficients

(a2n > 0). An approximate calculation ofre is now quite straightforward. Depending on
T and the sign and magnitude ofβ, equation (7) yields either one or two (real) solutions to
∂F/∂r = 0:

r = 0∀β, T r =
√
−3

(
1 +

β

4NkT

)
;−4

3
6 β

4NkT
6 −1. (8)

The upper solutionr = 0 represents a disordered state whereas the lower solution represents
the (partially) ordered state. The ordered state is only stable whenβ < 0, that is when
electronic order leads to a decrease of the internal energyU (see equation (4)). A very
important observation is that the free energy as expressed by (7) always yields asecond-order
transition at a temperature

Tv = − β

4Nk
(9)

i.e. the order parameter gradually decreases withT until it becomes zero atT = Tv, marking
the transition to the disordered state. This second-order transition is a direct consequence
of the sign of the expansion coefficientsa2n in the free-energy expansion. In the ordered
regime only the coefficient of the quadratic term is negative while all the others(2n > 4) are
positive. BelowTv, the minimum in theF(r)–r curve will therefore gradually move towards
r = 0 with increasing temperature. As a result, a discontinuous transition from an ordered
electron configuration to the disordered state is not possible and, at least within our model,
the entropy-driven electronic disordering process does in itself not provide a mechanism for



3682 J H V J Brabers et al

the observed first-order transitions in magnetite. For an explanation of this type of transition,
additional degrees of freedom and their corresponding contribution to the free-energy should
be taken into account as well. Furthermore, the interaction constantsM1 andM2 (i.e.β) should
parametrically depend on these additional degrees of freedom, establishing a coupling between
the order parameterr and the equilibrium values of the newly introduced degrees of freedom.
The lattice parameters evidently provide a set of additional degrees of freedom fulfilling this
requirement: directly related to the interionic Coulomb interactions, the interaction parameters
explicitly depend on the unit-cell dimensions and symmetry. The experimental observation of
both distortions and expansion of the lattice at the Verwey temperature as well as a pronounced
dependence ofTv on hydrostatic pressure are indeed strong indications for a coupling between
the symmetry and dimensions of the lattice and the electronic order parameter. Incorporating
this coupling into our analysis imposes a description in terms of the Gibbs rather than the
Helmholtz free energy, i.e. we have to extend equation (7) by adding a term(Gv) related to the
lattice deformation and pressure effects. A detailed analysis of the lattice-deformation energy
in terms of the actual unit cell dimensions is rather tedious. We therefore adopt a simplified
point of view in which we neglect (small) distortions of the crystal axes and we write the lattice-
deformation as an expansion of the unit cell volume rather than the different lattice parameters,
thereby disregarding the anisotropy of the lattice deformation. This latter approximation is
justified because it is known from experiment that near the Verwey transition both the lattice
parameters and the unit-cell volume are monotonic functions ofT [9]. Furthermore we neglect
the effect of thermal expansion, which is only very small nearTv. We define the volume
expansionv as the deviation of the unit cell volume from the value for the disordered state at
atmospheric pressurep0. Demanding∂Gv/∂v = 0 andv = 0 atp0 for the disordered state,
it is clear that the lowest order approximationGv takes the form

Gv = b

2
v2 + (p − p0)v (10)

where the quadratic term stands for the deformation energy withb serving as an effective bulk
modulus, and the linear term represents the pressure contribution. The effective bulk modulus
incorporates the volume dependence of all free energy contributionsnotdepending onr orp,
includingγ ′ (see equation (4)), which can be considered as additional constants. To make the
internal pressure atp = p0 vanish, the first volume derivatives of these contributions cancel
in the disordered state, which is in fact also an equilibrium state forT > Tv. The lowest-order
variation of ther- andp-independent part of the deformation energy, being described in terms of
the deviation (v) from the unit-cell volume in thedisorderedstate atp = p0, therefore consists
of a quadratic term 1/2bv2. When ordering sets in however, the lowest order deformation
energy is no longer necessarily a term quadratic inv. Due to the volume dependence ofβ,
an r- andv-dependent variation of the free energy occurs in addition to the term counting
for the deformation energy due tor- andp-independent free energy contributions (1/2bv2).
In a lowest-order approximation this term is linear inv, and the volume dependence of the
interaction constantβ is therefore expressed by a (lowest-order) linear term:

β = β0 + β1v. (11)

Combining (7), (10) and (11), the expression for the free energy becomes:

G = NkT

6
r4 +

(
NkT +

β0 + β1v

4

)
r2 +

b

2
v2 + (p − p0)v (12)

where irrelevant constant terms have been left out. For a given value ofr the total volume-
dependent contribution to the free energy (G′v) consists of a pure deformation part and a part
proportional tor2 related to the coupling ofr andv as a result of the volume dependence of
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β. Sinceb > 0, v will only be nonzero if the contribution proportional tor2 is negative and
its absolute value larger than the absolute value of the (positive) term related to the elastic
deformation, so that a nonzero volume deformation becomes preferable from an energetic
point of view if the condition

G′v =
β1r

2

4
v +

b

2
v2 + (p − p0)v < 0 (13)

holds. Similar to the disordered state, the first volume derivative ofG should vanish also in
the (partially) ordered state (i.e.∂G/∂v = 0) to make the internal pressure vanish.

The stationary points of the free-energy expression (12) are represented by

r = 0 r =
√
−3

(
1 +

β0 + β1v

4NkT

)
0< r 6 1 (14)

v = −β1r
2

4b
− (p − p0)

b
= ve + vp. (15)

Whenv, as expressed by (15), corresponds to a global minimum (i.e. the condition (13) is
fulfilled), a volume deformation arises, which consists of a contribution from the electronic
orderingve and a pressure contributionvp. Elimination ofv from the free-energy expression
can be achieved in that case by resubstitution of (15) into (12), leaving an expression forF in
terms ofr only:

G =
(
NkT

6
− 1

32
κβ2

1

)
r4 +

(
NkT +

β0 − κβ1(p − p0)

4

)
r2 (16)

whereκ = 1/b. Equation (16) represents a second-order polynomial inr2. The equilibrium
value of r (re) corresponds to the global minimum ofF on the interval 06 r 6 1 and
depends on the sign and magnitude of both polynomial coefficients, which are functions of
temperature. Notice thatG = 0 for the disordered state(r = 0). The temperature dependence
of these coefficients(a4 = (NkT /6− κβ2

1/32) anda2 = NkT + (β0 − κβ1(p − p0))/4)
leads to a temperature dependence ofre. Depending on the values ofβ0 andβ1 both first-
and second-order transitions from an ordered to a disordered state are possible (N.B. If we
put β1 = 0 andβ0 = β the free-energy expression (16) reduces to ther-dependent part
of equation (7) (i.e. equation (7) withoutγ ′ as an irrelevant constant), which yields only
second-order transitions. The equilibrium state is not influenced by volume effects in this
case). Whenβ1 6= 0, we havea4, a2 < 0 atT = 0 andG reaches its minimum value for
r = 1, corresponding to a fully ordered state at zero temperature. With increasing temperature
botha4 anda2 will increase linearly withT and both pass through zero at generally different
temperatures. We defineT4 as the temperature at whicha4 passes through zero andT2 as the
temperature for whicha2 = 0. The expressions fora4 anda2 yield

T4 = 3

16

κβ2
1

Nk
T2 = −1

4

β0 − κβ1(p − p0)

Nk
. (17)

For p > p0 two qualitatively different scenarios may occur in connection to the difference
betweenT4 andT2. ForT4 < T2 the functionG(r)will adopt a global minimum atr = rmin > 0
for T > T4 (a2 < 0 anda4 > 0 for T4 < T < T2 in this case). With increasingT the value
of rmin decreases and eventually enters the interval 06 r 6 1, marking the onset of gradual
disordering (see figure 1). Whena2 = 0 a second-order phase transition takes place, the
ordering temperature being equal toTv = T2 = −β0/4Nk for p = p0. This scenario is
not qualitatively different from the order–disorder transformation in the absence of a volume
effect.
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Figure 1. The variation of Gibbs free energy withr at
various temperatures in the case of a first-order transition
(T4 < T2).

Figure 2. The variation of Gibbs free energy withr
at various temperatures in the case of a second-order
transition(T4 > T2).

WhenT2 < T4 (a2 > 0 anda4 < 0 for T2 < T < T4) the situation is entirely different
(see figure 2). In this case the functionG(r) adopts a global maximum atrmax> 0 forT > T2.
With increasing temperature the value ofrmax increases. AtT = T2, r = 1 still corresponds
to the minimum free-energy value but with increasingT this minimum valueGr=1 steadily
increases towards zero. At a certain critical temperatureGr=1 = Gr=0 = 0. In such a case a
discontinuous, first-order transition from a fully ordered to a fully disordered state takes place.
This scenario resembles the situation in stoichiometric magnetite as revealed by experiments
(at p = p0) [6]. A crucial observation is that, according to the analysis presented here, the
occurrence of first-order transitions is directly related to the volume effect connected with
electronic ordering as a result of volume-dependent interaction constants.

An expression for the Verwey temperature in the case of a first-order transition can be
derived in a straightforward way. Puttingr = 1 in equation (16) and demanding thatGr=1

vanish(Gr=1 = Gr=0) yields for the critical temperature(Tv) at which the first-order transition
takes place

Tv = 3κβ2
1/16− 6[β0 − κβ1(p − p0)]/4

7Nk
. (18)

At p = p0, in fact, the values of the parametersβ0 andβ1 determine whether the order–disorder
transformation will be first or second order, as may be inferred from equation (17). The
respective conditions for the phase transition to be first or second order (T4 > T2 andT4 < T2)
can then be expressed in terms ofβ0 andβ1 as follows:

3
4κβ

2
1 + β0 > 0 first order

3
4κβ

2
1 + β0 < 0 second order. (19)

3. Qualitative and quantitative verification of the model

The existence of two regimes of respectively first- and second-order transitions in magnetite,
related to the cation deficiency or substitute concentration [6], can be explained in terms of
the conditions (19). As outlined in a previous paper [8], the effect of cation substitutions at
the octahedral lattice or a cation deficiency consists of a (partial) blocking of the electron-
exchange mechanism necessary to establish the long-range ordering scheme. The result is that
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a fraction of the 2+ electrons (y) is very strongly localized, thereby limiting the number of 2+

electrons actually participating in the ordering–disordering process. For low contents of cation
substitutions or low cation deficiencies, the interaction parameters decrease linearly with the
fractiony of blocked, strongly localized 2+ electrons:

β = (1− y)βy=0 = (1− y)β0, y=0 + (1− y)β1, y=0v (20)

so that the model parametersβ0 andβ1 should be considered as functions ofy:

β0 = (1− y)β0, y=0 β1 = (1− y)β1, y=0. (21)

The fractiony is proportional to the oxygen parameterδ or the substitute concentrationx
(y = cδδ, y = cxx wherecx depends on the valency of the substituted cations). Considering
the dependence ofβ1 andβ0 on δ andx, equation (19) incorporates the possibility of a sharp
transition from a first- to second-order regime with increasingδ or x when 3/4κβ2

1, y=0 is only
a little larger than|β0, y=0| (recall thatβ0 < 0). As β1 appears in a quadratic form in (19),
whereasβ0 only as a linear term, the term34κβ

2
1 will decrease more strongly withδ or x than

|β0|. As a result critical values ofδ andx exist, for which3
4κβ

2
1 +β0 = 0, marking the transition

between the two regimes. In the case of magnetite a sharp transition of this nature has been
observed indeed in measurements on highly stoichiometric samples.

As in our model34κβ
2
1 has to be almost equal to−β0 to make the transition from the first-

to a second-order regime possible, the value ofTv is, within the context of the model, mainly
determined by the value ofβ0, as can be verified from equation (19). For low values ofx and
δ the contributions toTv linear inx or δ dominate over the quadratic contributions, resulting
from the term 3κβ2

1/16 andTv will depend approximately linearly onx andδ in this case. This
observation agrees with experiment [10]. For Ti and Zn substitutions the critical concentration
is approximatelyxc ≈ 0.012 andcx = 9 [8]. From these values and combination of (19), (20)
and (21) we estimateκβ2

1 ≈ −1.49β0 for pure magnetite.
So far we have seen that the model yields qualitatively correct results. A quantitative

check of the applicability of the model is therefore a logical next step. Reproduction of the
experimentally observed value ofTv is a key element in such a test. Takingp = p0 and
consideringβ = β0 − κβ2

1/4 (r = 1 belowTv), the expression (18) forTv can be rearranged
as

Tv = 6

7

−β
4Nk

− 3

7

κβ2
1

16Nk
. (22)

Estimates forβ can be obtained from measurements of the electrical transport properties,
indicative of a valueβ/N ≈ 0.05 eV± 10% [8]. Sinceβ = β0 − κβ2

1/4 by definition and
for pure magnetiteκβ2

1 ≈ −1.49β0, we can estimateκβ2
1 ≈ −1.09β. By substitution of this

estimate and the experimentally estimatedβ-values into (22) the model yields for the Verwey
temperatureTv = 107 K±10%. This result is in fairly good agreement with the experimental
value ofTv ≈ 123 K, even slightly better than the result ofTv ≈ 145 K± 10% reported in our
previous paper [8], which did not include the effects of the lattice deformation.

For a last crucial test of our model we focus on a comparison of the influence of pressure
on Tv as predicted by the model, and the experimental data available on this issue. Such a
comparison is particularly important, as it indicates whether the parametric dependence of the
free energy on the unit cell dimensions is correctly described by the approximate expression
(12). As outlined before, the distinction between first- and second-order Verwey transitions for
different substitute concentrations appears as a direct consequence of this expression due to the
way in which the parametric dependence ofGon the unit-cell volume occurs in it. An indication
that the volume dependence ofG is indeed correctly incorporated into equation (12) would
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therefore strongly corroborate the viewpoints outlined in this paper on the Verwey transition
and the role of volume effects therein.

Measurements ofTv as a function of hydrostatic pressures even up to 60 kbar have
shown thatTv decreaseslinearly with pressure at a rate of dTv/dP = −0.27 K kbar−1 for
0 < p < 60 kbar [11, 12]. Equation (18) indeed predicts a linear relationship betweenp

andTv. As may be inferred from equation (15), the quantity−κβ1/4 can be identified as the
volume expansionve induced by complete electronic ordering(r = 1), which corresponds
to the discontinuous volume change that occurs when a first-order transition is passed while
decreasing temperature(r = 0→ r = 1). The pressure-induced shift ofTv can be expressed
in terms ofve as

1Tv(p) = −6ve(p − p0)

7Nk
. (23)

The value for the relative volume expansion (1V/V ) induced by the Verwey order in pure
magnetite is known from literature:1V/V = 6×10−4. As this value is positive equation (23)
indeed predicts the experimentally observed decrease of theTv with increasing pressure. A
quantitative reproduction of the experimental data can be obtained as well. By takingN for
the number of 2+ electrons per cubic metre(1.35× 1028), substitution of 6× 10−4 for ve in
equation (23) yields dTv/dp = −0.276 K kbar−1: an excellent agreement with experiment.

4. Conclusions

We have presented a modified mean-field method describing electronic ordering in magnetite
in terms of a volume dependent long-range Coulomb interaction. Both first- and second-order
electronic phase transitions can be described in terms of the presented method, as well as the
experimentally observed transition from a regime of first- to second-order phase transitions
with increasing cation deficiencyδ or cation substitute concentrationx. First-order transitions
can be identified as a direct consequence of the relation between the interionic interaction
strength and the unit cell dimensions. The linear dependence, predicted by the model, ofTv
on δ, x andp is consistent with experiment. The experimental values forTv and its pressure
derivative dTv/dp are reproduced very well by the model. In general, the outlined analysis in
terms of interionic interactions combined with lattice deformation effects provides a unique
interpretation of the Verwey transition. The incorporation of the lattice deformations into the
model, and its apparent success, offers a new viewpoint.
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