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Abstract. Fe**/Fe** ordering in magnetite is described in terms of a simple mean-field approach
based on an effective interionic Coulomb potential. It is shown that first-order electronic
order—disorder transformations, as reported in the literature, can only be reproduced when the
dependence of the interionic potential on the unit-cell dimensions is taken into account. In
this case the first-order transitions can then be viewed as the result of an interplay between the
lattice-deformation energy and the free-energy contribution related to the electronic ordering of
the octahedral Fe lattice. Furthermore, the effect of the lattice deformation by hydrostatic pressure
on the Verwey transition can be successfully explained to some extent within the context of the
same framework. In comparison to experimental data available from the literature, the mean-field
approach developed in this paper yields very acceptable results with respect to both qualitative and
guantitative aspects, thus opening an interesting new viewpoint on the mechanism of the Verwey
transition.

1. Introduction

Since its discovery the Verwey transition in magnetite;(® has been the subject of numerous
investigations. As early as the 1930s Verwatyal suggested that the phase transition in
magnetite near 125 K, as observed by anomalies in the thermal-expansion and the electric and
magnetic properties, consists of an electronic order—disorder transformation at teete
octahedral sublattice [1]. Verwey’'s interpretation of the phase transition was based on
measurements of the conductivity against temperature, showing that the conductivity increases
discontinuously by orders of magnitude at the transition. In fact, the low-temperature phase
transformation in magnetite became one of the first insulator-metal transitions reported ever.
The phenomenon has never lost attention ever since. Lately, for instance, the Verwey transition
has often been referred to as an example of charge-ordering phenomena in connection with
the colossal magnetoresistance of perovskites [2].

Among many other intriguing issues, the classification (order) of the electronic phase
transition at the Verwey transition itself is an interesting topic that has been extensively
investigated [3]. In stoichiometric magnetite the Verwey transition is first order. With
increasing cation deficiency or with increasing concentration of cation substitutes for the Fe
ions at the octahedral lattice sites, however, the transition becomes second order. Honig and
co-workers dealt with this aspect of the Verwey transition both experimentally and theoretically
[4-6]. Theirtheoretical investigations consist of a description of the Verwey transition in terms
of amean-field approximation originally advanced byaS$ier and Kittel (SK) [7]. The method
is capable of describing some qualitative aspects of the Verwey transition in a rather formal
and mathematical way. A drawback of the implementation of the SK method by lbrig
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is that the actual mechanism responsible for the electronic order and its collapse at the Verwey
temperature is not clearly specified, even when such a precise specification is not required for
a more qualitative description of the Verwey transition. So far, a transparent explanation of
an ordering mechanism capable of dealing with both first- and second-order electronic phase
transitions has not been given in the literature. The present authors recently proposed a model
for electronic ordering in magnetite in terms of an effective interionic Coulomb potential
[8]. Though offering a successful (semi-) quantitative explanation for the Verwey transition,
our approach was, however, unable to deal with problems related to the order of the Verwey
transition. We hereby present an extension of our previous treatment that points to the physical
mechanisms leading to first-order transitions and how they are suppressed to yield second-order
transitions by cation deficiency or cation substitutions.

2. Mean-field model based on an effective interionic Coulomb potential

The basic concept of our model is that the unpaired 3d electrons responsible for the electronic
ordering at the octahedral lattice’ @ectrons) can occupy the sites of two equivalent sublattices
(aand b). In the perfectly ordered state one of the sublattices is fully occupied while the other
oneis fully empty. Driven by the entropy term in the free energy, theléctrons are distributed
statistically over both sublattices with increasing temperature until at the Verwey temperature
both sublattices are equally occupied. In a mean-field approach, the (Coulomb) interaction
energy of the 2electrons at the respective a and b sublattices can be expressed in terms of the
degree of occupatiorz] of the a sublattice and two interaction constats andM,) mainly

related to the Madelung energy [8]:

Us=—(@gMi+a(l—g)M1+ (11— g)M>+agMy)
Up=—(1-gMy+agM +gMz+a(l— g)M>). 1)

The parameted; thereby counts for the interaction of a@ectron with other 2electrons in
the same sublattice, where#s corresponds to the interaction of the electron with the other
sublattice. The constant= 3/2 represents the ratio of the ionic charges of th¥ Bad Fé*
ions.

The internal energy of the total ensemble 6felectrons can now be expressed as

U=3N@U,+(L—-gUy)=pe*—Bg+y )
whereN is the total number of 2electrons and

B = N(a—1)(M1 — M)

y =—3N(Mi+aMy). 3)

The factor 1/2 should be included in (2) to avoid double countings. The vargabégies
betweeng = 1 in the ordered state and= 1/2 in the disordered state. By substitution of
g = linto (1) and evaluation df, — U,, /N can be identified as the difference between the
a-sublattice and b-sublatticé 2lectron levels in the perfectly ordered state.

The quantityr = 2g — 1 can be viewed as the order parameter of the probletrvases
betweerr = 1forg = 1 andr = 0 forg = 1/2. By substitution of = (r +1)/2, (2) and (3)
then transform into

U= §r2+y’ Y = INL+a) (M1 + M) (4)
wherey’ can be viewed as the internal energy of the total ensemblé efeZtrons in the
disordered staté- = 0), whereag8r?/4 counts for the variation of the internal energy upon
ordering.
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To establish an expression for the Helmholtz free endfgy U — TS as a function
of » we must also find an expression for the entréjgy) = kIn W(r). Based on similar
considerations as the SK method [7], we takelibthe number of independent ways to realize
a state having N electrons at the a sublattice a(id— g) N electrons at the b sublattice:

NI 2 .
W= | =) ©

By application of Stirling’s formula to (5) and substitution of the result together with (3) and
(4) into F = U — T S the Helmholtz free energy fgr # 0, 1 can then be expressed as

F=pg?—pg+y—2NkT(—glng —(1-g)In(1—g))

B 5 , r+1 r+1 1—r 1-—7r
=—rc+y —2NkT| — In - In

4" 7 2 2 2 2
asN — oo in the thermodynamic limit.

In thermodynamic equilibriumr adopts a value, for which (6) reaches its lowest
minimum on the interval 6< r < 1. Generallyr, depends on temperature. The procedure
of minimizing (6) with respect te (i.e. solving the equatiofF/dr = 0) cannot be carried
out completely by algebraic methods but requires a numerical procedure in its final stage.
Especially for smaller-values however, the free energy can be approximated very accurately
by a power-series expansion in r up to the fourth order, giving

(6)

Nk
S~ —?r“ — Nkr?+ Nk2In2

and consequently:

NkT
F ~ 5 r4+<NkT+§>r2—NkT2In2+y/. (7

Higher order expansion$ and F contain only even term@iy, ") with positive coefficients
(a2, > 0). An approximate calculation of, is now quite straightforward. Depending on
T and the sign and magnitude 8f equation (7) yields either one or two (real) solutions to

aF/ar = O:
B 4 B
= V = —_ + — ) ——= < _— <— .
r=0vp 1T "=y 3(1 4NkT)’ 3Saver ST ®

The upper solutiom = O represents a disordered state whereas the lower solution represents
the (partially) ordered state. The ordered state is only stable when 0, that is when
electronic order leads to a decrease of the internal enBrggee equation (4)). A very
important observation is that the free energy as expressed by (7) always yselcisral-order
transition at a temperature

B

T="2ank ®)
i.e. the order parameter gradually decreases Withtil it becomes zero &t = T, marking
the transition to the disordered state. This second-order transition is a direct consequence
of the sign of the expansion coefficients, in the free-energy expansion. In the ordered
regime only the coefficient of the quadratic term is negative while all the otBers 4) are
positive. BelowT,, the minimum in theF (r)— curve will therefore gradually move towards
r = 0 with increasing temperature. As a result, a discontinuous transition from an ordered
electron configuration to the disordered state is not possible and, at least within our model,
the entropy-driven electronic disordering process does in itself not provide a mechanism for
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the observed first-order transitions in magnetite. For an explanation of this type of transition,
additional degrees of freedom and their corresponding contribution to the free-energy should
be taken into account as well. Furthermore, the interaction congtaraadM; (i.e. 8) should
parametrically depend on these additional degrees of freedom, establishing a coupling between
the order parameterand the equilibrium values of the newly introduced degrees of freedom.
The lattice parameters evidently provide a set of additional degrees of freedom fulfilling this
requirement: directly related to the interionic Coulomb interactions, the interaction parameters
explicitly depend on the unit-cell dimensions and symmetry. The experimental observation of
both distortions and expansion of the lattice at the Verwey temperature as well as a pronounced
dependence df, on hydrostatic pressure are indeed strong indications for a coupling between
the symmetry and dimensions of the lattice and the electronic order parameter. Incorporating
this coupling into our analysis imposes a description in terms of the Gibbs rather than the
Helmholtz free energy, i.e. we have to extend equation (7) by adding a &rymelated to the

lattice deformation and pressure effects. A detailed analysis of the lattice-deformation energy
in terms of the actual unit cell dimensions is rather tedious. We therefore adopt a simplified
point of view in which we neglect (small) distortions of the crystal axes and we write the lattice-
deformation as an expansion of the unit cell volume rather than the different lattice parameters,
thereby disregarding the anisotropy of the lattice deformation. This latter approximation is
justified because it is known from experiment that near the Verwey transition both the lattice
parameters and the unit-cell volume are monotonic functio@s[8f. Furthermore we neglect

the effect of thermal expansion, which is only very small nEar We define the volume
expansiorv as the deviation of the unit cell volume from the value for the disordered state at
atmospheric pressugg. DemandingdG,/dv = 0 andv = 0 at pg for the disordered state,

it is clear that the lowest order approximatiGy takes the form

b
G, = Evz +(p — pov (10)

where the quadratic term stands for the deformation energyivgnving as an effective bulk
modulus, and the linear term represents the pressure contribution. The effective bulk modulus
incorporates the volume dependence of all free energy contributmmepending om or p,
includingy’ (see equation (4)), which can be considered as additional constants. To make the
internal pressure gt = pg vanish, the first volume derivatives of these contributions cancel

in the disordered state, which is in fact also an equilibrium stat& for T,. The lowest-order
variation of the - andp-independent part of the deformation energy, being described in terms of
the deviation ¢) from the unit-cell volume in thdisorderedstate afpp = po, therefore consists

of a quadratic term /2bv?. When ordering sets in however, the lowest order deformation
energy is no longer necessarily a term quadratic.irbue to the volume dependence &f

an r- and v-dependent variation of the free energy occurs in addition to the term counting
for the deformation energy due te and p-independent free energy contributiongZav?).

In a lowest-order approximation this term is linearvinand the volume dependence of the
interaction constarg is therefore expressed by a (lowest-order) linear term:

B = Bot Bav. (11)
Combining (7), (10) and (11), the expression for the free energy becomes:
T +
G = —Né e+ (NkT + P P 4ﬁ1v>’2 ¥ gvz +(p— poyv (12)

where irrelevant constant terms have been left out. For a given valu¢heftotal volume-
dependent contribution to the free energy X consists of a pure deformation part and a part
proportional tor? related to the coupling of andv as a result of the volume dependence of



Verwey transition in magnetite 3683

B. Sinceb > 0, v will only be nonzero if the contribution proportional 8 is negative and
its absolute value larger than the absolute value of the (positive) term related to the elastic
deformation, so that a nonzero volume deformation becomes preferable from an energetic
point of view if the condition
2 b
G;:'BlTrv+§v2+(p—po)v<O (13)

holds. Similar to the disordered state, the first volume derivativ@ ehould vanish also in
the (partially) ordered state (i.8G/dv = 0) to make the internal pressure vanish.

The stationary points of the free-energy expression (12) are represented by

r=0 r:\/_3(1+’3°+’31”) 0<r<1 (14)
ANKT
Bir?  (p — po)
= — 4b _—b = Ve + Up. (15)

Whenv, as expressed by (15), corresponds to a global minimum (i.e. the condition (13) is
fulfilled), a volume deformation arises, which consists of a contribution from the electronic
orderingv, and a pressure contributiary. Elimination ofv from the free-energy expression
can be achieved in that case by resubstitution of (15) into (12), leaving an expressioimfor
terms ofr only:

_(NKT 1 5\ 4 Bo—«Bi(p —po)\ »
G—< 5 32/<,31)r +<NkT+ ) )r (16)

wherex = 1/b. Equation (16) represents a second-order polynomied.ifThe equilibrium

value ofr (r.) corresponds to the global minimum &f on the interval 0< r < 1 and
depends on the sign and magnitude of both polynomial coefficients, which are functions of
temperature. Notice th& = O for the disordered state = 0). The temperature dependence

of these coefficientsas = (NkT /6 — K,Bf/32) anda, = NkT + (Bo — kB1(p — po))/4d)

leads to a temperature dependence.ofDepending on the values @f and 8; both first-

and second-order transitions from an ordered to a disordered state are possible (N.B. If we
put 81 = 0 andBy; = B the free-energy expression (16) reduces tortttependent part

of equation (7) (i.e. equation (7) withogt as an irrelevant constant), which yields only
second-order transitions. The equilibrium state is not influenced by volume effects in this
case). Wherg; # 0, we haveuy,a; < 0 atT = 0 andG reaches its minimum value for

r = 1, corresponding to a fully ordered state at zero temperature. With increasing temperature
bothas anda, will increase linearly withl” and both pass through zero at generally different
temperatures. We defirfg as the temperature at whieh passes through zero afig as the
temperature for which, = 0. The expressions far, anda, yield

_ 3B _1Bo—kpa(p — po)
~ 16 Nk 4 Nk ’
For p > po two qualitatively different scenarios may occur in connection to the difference
betweerl, andT>,. ForT, < T, the functionG (r) will adopt a global minimum at = ri, > 0

forT > T4 (a2 < 0andas > OforT, < T < T» in this case). With increasing the value

of rmin decreases and eventually enters the interval © < 1, marking the onset of gradual
disordering (see figure 1). When = 0 a second-order phase transition takes place, the
ordering temperature being equal®p = T, = —Bo/4Nk for p = po. This scenario is

not qualitatively different from the order—disorder transformation in the absence of a volume
effect.

4 D= (17)
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Figure 1. The variation of Gibbs free energy withat Figure 2. The variation of Gibbs free energy with
various temperatures in the case of a first-order transiticat various temperatures in the case of a second-order
(Ty < To). transition(7y > T»).

WhenT, < T4 (a2 > 0 andag < Ofor T, < T < T,) the situation is entirely different

(see figure 2). In this case the functi6iir) adopts a global maximum at,x > 0 for 7 > To.

With increasing temperature the valuergfy increases. AT = T, r = 1 still corresponds

to the minimum free-energy value but with increasifighis minimum valueG,_, steadily
increases towards zero. At a certain critical temperafiytg = G,—o = 0. In such a case a
discontinuous, first-order transition from a fully ordered to a fully disordered state takes place.
This scenario resembles the situation in stoichiometric magnetite as revealed by experiments
(at p = po) [6]. A crucial observation is that, according to the analysis presented here, the
occurrence of first-order transitions is directly related to the volume effect connected with
electronic ordering as a result of volume-dependent interaction constants.

An expression for the Verwey temperature in the case of a first-order transition can be
derived in a straightforward way. Putting= 1 in equation (16) and demanding th@t_,
vanish(G,—1 = G,—p) yields for the critical temperatuxd,) at which the first-order transition
takes place

7 _ 3BY/16—6[Bo — kPr(p — po)]/4
' 7Nk ’
At p = po, infact, the values of the parametggsandg; determine whether the order—disorder
transformation will be first or second order, as may be inferred from equation (17). The
respective conditions for the phase transition to be first or second @ider [> and7, < T>)
can then be expressed in terms8gfand8; as follows:

(18)

3kpZ+po>0 first order
3kpZ+po<0 second order (19)

3. Qualitative and quantitative verification of the model

The existence of two regimes of respectively first- and second-order transitions in magnetite,
related to the cation deficiency or substitute concentration [6], can be explained in terms of
the conditions (19). As outlined in a previous paper [8], the effect of cation substitutions at
the octahedral lattice or a cation deficiency consists of a (partial) blocking of the electron-
exchange mechanism necessary to establish the long-range ordering scheme. The result is that
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a fraction of the 2 electrons {) is very strongly localized, thereby limiting the number &f 2
electrons actually participating in the ordering—disordering process. For low contents of cation
substitutions or low cation deficiencies, the interaction parameters decrease linearly with the
fractiony of blocked, strongly localized"2electrons:

B=@Q—-y)By=0=(1—y)Boy=0*(1—y)B1 =0V (20)
so that the model parametetgand 81 should be considered as functionsyof
Bo= (1 —y)Bo,y=0 B1=(1—y)B1 y=0. (21)

The fractiony is proportional to the oxygen parameteor the substitute concentration

(y = ¢35, y = ¢, x Wherec, depends on the valency of the substituted cations). Considering
the dependence ¢ andfB, on§ andx, equation (19) incorporates the possibility of a sharp
transition from a first- to second-order regime with increasiogx when 3/4cﬁf’ v—o IS only

alittle larger than| B, y=o| (recall thatgy < 0). As g1 appears in a quadratic form in (19),
whereasy only as a linear term, the terékﬁf will decrease more strongly withor x than

|Bol. As aresult critical values é¢fandx exist, forwhichgxﬁfﬁ}o = 0, marking the transition
between the two regimes. In the case of magnetite a sharp transition of this nature has been
observed indeed in measurements on highly stoichiometric samples.

As in our model%:«ﬁf has to be almost equal te8, to make the transition from the first-
to a second-order regime possible, the valug,ds, within the context of the model, mainly
determined by the value @, as can be verified from equation (19). For low values ahd
3 the contributions td, linear inx or § dominate over the quadratic contributions, resulting
from the term 3ﬁf/16 andr, will depend approximately linearly anands in this case. This
observation agrees with experiment [10]. For Ti and Zn substitutions the critical concentration
is approximately,. ~ 0.012 andc, = 9 [8]. From these values and combination of (19), (20)
and (21) we estimates? ~ —1.498, for pure magnetite.

So far we have seen that the model yields qualitatively correct results. A quantitative
check of the applicability of the model is therefore a logical next step. Reproduction of the
experimentally observed value @f is a key element in such a test. Takipg= po and
consideringd = Bo — kpZ/4 (r = 1 belowT,), the expression (18) fdF, can be rearranged
as

T_G—ﬂ 3 «kp?
"7 74Nk 716Nk’

Estimates for8 can be obtained from measurements of the electrical transport properties,
indicative of a valug8/N =~ 0.05 eV+ 10% [8]. Sincep = Bo — «xB2/4 by definition and
for pure magnetite 87 ~ —1.496,, we can estimateﬁf ~ —1.098. By substitution of this
estimate and the experimentally estimggedalues into (22) the model yields for the Verwey
temperaturd;, = 107 K+ 10%. This result is in fairly good agreement with the experimental
value of T, = 123 K, even slightly better than the resultif~ 145 K+ 10% reported in our
previous paper [8], which did not include the effects of the lattice deformation.

For a last crucial test of our model we focus on a comparison of the influence of pressure
on T, as predicted by the model, and the experimental data available on this issue. Such a
comparison is particularly important, as it indicates whether the parametric dependence of the
free energy on the unit cell dimensions is correctly described by the approximate expression
(12). As outlined before, the distinction between first- and second-order Verwey transitions for
different substitute concentrations appears as a direct consequence of this expression due to the
way in which the parametric dependencéain the unit-cell volume occursinit. Anindication
that the volume dependence @Gfis indeed correctly incorporated into equation (12) would

(22)
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therefore strongly corroborate the viewpoints outlined in this paper on the Verwey transition
and the role of volume effects therein.

Measurements of, as a function of hydrostatic pressures even up to 60 kbar have
shown thatT, decreasesinearly with pressure at a rate offg/dP = —0.27 K kbar? for
0 < p < 60 kbar [11,12]. Equation (18) indeed predicts a linear relationship between
andT,. As may be inferred from equation (15), the quantityB;/4 can be identified as the
volume expansiom, induced by complete electronic orderiig = 1), which corresponds
to the discontinuous volume change that occurs when a first-order transition is passed while
decreasing temperatu¢e = 0 — r = 1). The pressure-induced shift &f can be expressed
in terms ofv, as

6v.(p — po)
TNk '
The value for the relative volume expansian(/ V) induced by the Verwey order in pure
magnetite is known from literatures V/V = 6 x 10~4. As this value is positive equation (23)
indeed predicts the experimentally observed decrease df,théth increasing pressure. A
guantitative reproduction of the experimental data can be obtained as well. By pékiog
the number of 2 electrons per cubic metr@.35 x 10%®), substitution of 6x 10~* for v, in
equation (23) yields fi,/dp = —0.276 K kbar: an excellent agreement with experiment.

4. Conclusions

We have presented a modified mean-field method describing electronic ordering in magnetite
in terms of a volume dependent long-range Coulomb interaction. Both first- and second-order
electronic phase transitions can be described in terms of the presented method, as well as the
experimentally observed transition from a regime of first- to second-order phase transitions
with increasing cation deficiendyor cation substitute concentration First-order transitions

can be identified as a direct consequence of the relation between the interionic interaction
strength and the unit cell dimensions. The linear dependence, predicted by the mdgel, of
on g, x andp is consistent with experiment. The experimental valuegfaand its pressure
derivative d’, /dp are reproduced very well by the model. In general, the outlined analysis in
terms of interionic interactions combined with lattice deformation effects provides a unique
interpretation of the Verwey transition. The incorporation of the lattice deformations into the
model, and its apparent success, offers a new viewpoint.
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